Free-Standing Undoped ZnO Microtubes with Rich and Stable Shallow Acceptors

نویسندگان

  • Qiang Wang
  • Yinzhou Yan
  • Yong Zeng
  • Yue Lu
  • Liang Chen
  • Yijian Jiang
چکیده

Fabrication of reliable large-sized p-ZnO is a major challenge to realise ZnO-based electronic device applications. Here we report a novel technique to grow high-quality free-standing undoped acceptor-rich ZnO (A-ZnO) microtubes with dimensions of ~100 μm (in diameter) × 5 mm (in length) by optical vapour supersaturated precipitation. The A-ZnO exhibits long lifetimes (>1 year) against compensation/lattice-relaxation and the stable shallow acceptors with binding energy of ~127 meV are confirmed from Zn vacancies. The A-ZnO provides a possibility for a mimetic p-n homojunction diode with n(+)-ZnO:Sn. The high concentrations of holes in A-ZnO and electrons in n(+)-ZnO make the dual diffusion possible to form a depletion layer. The diode threshold voltage, turn-on voltage, reverse saturated current and reverse breakdown voltage are 0.72 V, 1.90 V, <10 μA and >15 V, respectively. The A-ZnO also demonstrates quenching-free donor-acceptor-pairs (DAP) emission located in 390-414 nm with temperature of 270-470 K. Combining the temperature-dependent DAP violet emission with native green emission, the visible luminescence of A-ZnO microtube can be modulated in a wide region of colour space across white light. The present work opens up new opportunities to achieve ZnO with rich and stable acceptors instead of p-ZnO for a variety of potential applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-band-edge slow luminescence in nominally undoped bulk ZnO

We report the observation of slow emission bands overlapped with the near-band-edge steady-state luminescence of nominally undoped ZnO crystals. At low temperatures the time-resolved spectra are dominated by the emission of several high-energy bound exciton lines and the two-electron satellite spectral region. Furthermore, two donor-acceptor pair transitions at 3.22 and 3.238 eV are clearly ide...

متن کامل

Critical increase in Na-doping facilitates acceptor band movements that yields ~180 meV shallow hole conduction in ZnO bulk crystals

Stable p-type conduction in ZnO has been a long time obstacle in utilizing its full potential such as in opto-electronic devices. We designed a unique experimental set-up in the laboratory for high Na-doping by thermal diffusion in the bulk ZnO single crystals. SIMS measurement shows that Na concentration increases by 3 orders of magnitude, to ~3 × 1020 cm-3 as doping temperature increases to 1...

متن کامل

Optical and photocatalytic properties Undoped and Mn-doped ZnO nanoparticles synthesized by hydrothermal method: Effect of annealing temperature

Undoped and Mn-doped ZnO nanoparticles were successfully prepared by the hydrothermal method with different annealing temperature conditions. Structural, chemical and optical properties of the samples were studied by X-ray diffraction (XRD), Field Emission scanning electron microscopy (FESEM), UV-Vis spectrophotometry and Fourier transform infrared (FT-IR) spectroscopy. The phase purity was con...

متن کامل

Shallow donor states induced by in-diffused Cu in ZnO: a combined HREELS and hybrid DFT study.

A combined experimental and first principles study of Cu defects in bulk ZnO is presented. Cu particles are epitaxially deposited on the polar O-ZnO(0001) surface at room temperature. Upon heating, a broadening of the quasielastic peak in high resolution electron energy loss spectra is observed, corresponding to an electronic doping effect of Cu atoms in bulk ZnO with an ionization energy of 88...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016